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I. INTRODUCTION

Quantum mechanics poses many different types of
mathematical problems with real-world significance,
however, they can be increasingly more difficult to solve
analytically. Many systems are defined by allowing an in-
coming particle to interact with a certain potential bar-
rier or well. These potentials can range from a simple
infinite well to more difficult systems such as an inverse
hyperbolic cosine potential. In these cases, numerical
methods are a necessary and powerful solution. Two
simple but important tactics are the shooting method
and the bisection method both of which require a simple
recursion formula. The purpose of this exercise was to
gain exposure to these methods by calculating the bound
energy states and the number of nodes for two different
potentials, the inverse squared cosh potential and a dou-
ble well potential conceived by the superposition of two
inverse squared cosh potentials.

II. THEORETICAL BACKGROUND

The time-independent Schrödinger equation used in
the following methods is given by,

Eϕ(x) =
−ℏ2

2m

d2ϕ(x)

dx2
+ V (x)ϕ(x), (1)

where V(x) is defined as,

V (x) = −V0
1

cosh2(x/a)
. (2)

V0 is the depth of the energy well and a is a constant
that determines the well’s width. These values can be
seen in Figure 1.

FIG. 1: The figure shows two different plots. The plot on the left
is the single potential well and the plot on the right is the double
potential well, although both are based on Equation 2. [1].

While this exercise is composed of two different poten-
tials, the second potential is just a slight variation of the
first and they are both inverse squared cosh functions.
To make the Schrödinger equation easier to manage, it
is much simpler to write it in other quantities that are
dimensionless. The new equation looks like this,

ϵϕ(ξ) = −d2ϕ(ξ)

dξ2
+ ν(ξ)ϕ(ξ), (3)

where,

ν(ξ) = −ν0cosh
−2(ξ), (4)

and the dimensionless substitutions are,

ξ = x/a, ϵ =
2ma2E

ℏ2
, ν0 =

2ma2V0

ℏ2
. (5)

The value of ν0 is set to a constant value of 6 in the
calculations. Simplifying Equation 3 results in a new
variable f(ξ) = ν(ξ)− ϵ, which changes the equation to

d2ϕ(ξ)

dξ2
= f(ξ)ϕ(ξ). (6)

A Taylor expansion to the second order around ϕ(ξ)
reveals a necessary recursion formula given by,

ϕ[i± 1] ≈ (2 + h2f [i])ϕ[i]− ϕ[i− 1], (7)

that allows the calculation of all values of ϕ given
knowledge of the first two values of the ξ[i] mesh, which
can be calculated using known boundary conditions [1].
In the equation, h is the stepsize and i determines which
value on the grid is being pulled. Using the boundary
conditions that ν(ξ) → 0 as ξ → −∞, the B coefficient
of the solution to the differential equation in Equation 6
disappears, and what is left is,

ϕ(ξ) = Aeqξ, (8)

where q =
√
−ϵ. After putting this approximated

solution into the center of the potential well, the ra-
tio ϕ[1]/ϕ[0] = eqh, which means that ϕ[0] = 1 and
ϕ[1] = eqh. The recursion formula in Equation 7 and
the two previously calculated initial conditions can now
be used in the shooting method and bisection method in
the code portion of the exercise[1].
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III. METHODS

1) Single-Well Potential Model

A) Shooting Method

The impact of varying the energy ϵ on the q-value ϕ[1],
the f-function, and the remaining ϕ[i] was observed in
order to find eigenvalues using the shooting method. So-
lutions were sought by adjusting the energy values to ob-
tain a normalized wave function with exponential decay
for large positive ξ. The approach employed was known
as the ”Shooting Method”.

In the implementation of the shooting method, the ϕ-
vector was initialized by setting all its elements to zero
using the np.zeros command. The step-length h was
determined by dividing the difference between ξmax and
ξmin by the number of steps Nsteps. Additionally, the
ν(ξ)-vector was established, and an initial estimation for
the energy value, bounded by −ν0 and 0, was made.
Further calculations involved defining q, ϕ[0], and ϕ[1]
to facilitate the computation of the wave vector ϕ us-
ing a for-loop and the recursion relation. The result-
ing wave function ϕ was visualized by employing the
plt.plot(xi, phi) command, and the plot was dis-
played using plt.show().
To validate the code and implemented algorithm, the

results were compared with analytically derived solutions
for the Schrödinger Equation. For the studied potential,
the eigenvalues were determined as ϵn = −(b−n)2 for all
n < b, where ν0 = b(b+ 1). In the specific case of ν0 = 6
corresponding to b = 2, the expected eigenenergies were
ϵ0 = −4 and ϵ1 = −1, without any additional solutions.
The program was executed to investigate the behavior of
the wave function for these theoretical eigenenergies. The
resulting wave function for the ground state was plotted
and subjected to further analysis.

B) Bisection Method

In order to automate the process of finding solutions
in the single-well potential model, a mathematical crite-
rion that aligns with the visual observation of the func-
tion’s divergence was employed, known as the bisection
method. This method involved examining the behavior
of the wave function as ξ approaches infinity. The com-
putational steps taken were as follows:

Firstly, the target bound state, characterized by the
desired number of nodes in the wave function, was de-
termined. An energy range was defined to facilitate the
search for solutions. If the minimum energy value yielded
an excessive number of nodes or the maximum energy
value resulted in an insufficient number of nodes, the
search was abandoned, and a notification was printed
to indicate that the desired solution could not be found
within the specified energy range.

Next, a new energy value was selected as the midpoint
between the minimum and maximum energies. To de-
termine whether the energy was too low or too high, two
tests were conducted. Firstly, the number of nodes within
the range [ξmin, ξmax] was examined. Secondly, the sign
of the expression ϕ[N − 1]ϕ[N ]− eqhϕ[N ]2 was assessed.
A negative value indicated that |ϕ[N ]| was excessively
large, resulting in a blow-up of the tail with the same
sign as ϕ[N ], meaning no new nodes were present. On
the other hand, a positive value signified that the slope
between ϕ[N − 1] and ϕ[N ] was too steep, indicating the
existence of exactly one additional node beyond ξmax.
This process was repeated until the relative energy dif-

ference (ϵmin−ϵmax)/(ϵmin+ϵmax) became smaller than a
predefined tolerance of approximately 10−8, correspond-
ing to eight-digit accuracy, or until the precision limit of
the computer’s floating-point numbers was reached.

The bisection method provides an automated and effi-
cient approach to identifying solutions in the single-well
potential model, eliminating the need for manual identi-
fication and speeding up the computational process.

2) Double-Well Potential Model

To extend the analysis to the double well potential,
the bisection method program implemented in the single-
well potential case was modified accordingly. The ξ-range
and parameters were adjusted to handle the double well
potential. The computational steps remained similar to
Part One, utilizing the modified program to determine
bound states and plot energy eigenvalues as a function of
the separation parameter s. Additionally, wave functions
for the ground state and first excited state were plotted
for large values of s to gain insights into their behavior.

The computational steps undertaken in the double-well
potential case allowed for the analysis of bound states in
the double-well potential model, contributing to a com-
prehensive understanding of the system.

IV. RESULTS

1) Shooting Method

The number of nodes for both the ground state and
first excited state wave functions were found. This was
done utilizing the technique discussed more in Sections
III and II with the code being presented in the Appendix
section at VI. The wave function graphs and ϵ values for
both the first excited state and ground state were found
as well, resulting in Figures 2 and 3 for the ground and
first excited states respectively. The answer to all three
questions in this section immediately follow the graphs
below.

1.1) The ground state wave function has zero
nodes, as seen in Figure 2.
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FIG. 2: The figure shows the plot for the wave function of the
ground state for the single well potential model with the x-axis
being the value of ξ while the y-axis is ϕ(ξ). The graph displays
the results of running the code in the Appendix in Section VI,
which is based on equation (7). The ϵ value found for the ground
state with the shooting method was −3.9990186.

FIG. 3: The figure shows the plot for the wave function of the
first excited state of the single well potential model with the
x-axis being the value of ξ while the y-axis is ϕ(ξ). The graph
displays the results of running the code in the Appendix in
Section VI, which is based on equation (7).The ϵ value found for
the first exited state with the shooting method was −.9983.

1.2) The first excited state wave function has
one node, as seen in Figure 3.

1.3) The excited state extends further into
space because it has a higher energy eigenvalue
when compared to the ground state. This
causes the electron to have a greater kinetic
energy which increases the likelihood for it to
extend further into the further regions of the
potential well. This allows the wave function to
”penetrate” deeper into the region where the
potential energy is lower, whereas the ground

state wave function did not have enough energy
to do so causing the wave function to extend
further out.

2) Bisection Method

For the bisection method section the value for the en-
ergy of the ground state and first excited state systems
ϵ was found utilizing a very similar technique the shoot-
ing Method. Where the two methods differ is that the
bisection method automates the finding of the ϵ value us-
ing techniques described more thoroughly in Section III.
The wave function graphs and ϵ values for both the first
excited state and ground state were found as well, result-
ing in Figures 4 and 5 for the ground and first excited
states respectively. The answer to the two questions in
this section immediately follow the graphs below.

FIG. 4: The figure shows the plot for the wave function of the
ground state for the single well potential model with the x-axis
being the value of ξ while the y-axis is ϕ(ξ). The graph displays
the results of running the code in the Appendix in Section VI,
which is based on equation (7). The ϵ value found for the ground
state with the bisection method was −3.99902.

2.1) The instructions recommend that an upper
energy limit of ϵ = 1 be installed to ensure that
the value for the energy ϵ never approximately
equals zero. This is done because the
assumption that “ν(ξ → −∞) ≈ 0 is negligible
compared to ϵ” no longer holds, since ϵ is now
approximately 0 as well. This results in
equation (8) no longer being an accurate
approximation of equation (6).

2.2) We unfortunately did not have the time to
try large ν0 and find the associated
eigenenergies.
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FIG. 5: The figure shows the plot for the wave function of the
first excited state of the single well potential model with the
x-axis being the value of ξ while the y-axis is ϕ(ξ). The graph
displays the results of running the code in the Appendix in
Section VI, which is based on equation (7).The ϵ value found for
the first exited state with the bisection method was −0.99829.

3) Double-Well Potential Model

The analysis was expanded onto double well potential
models utilizing very similar computational techniques to
the shooting and bisection method with updated values
for the ν parameter and altered ranges for ξ, as men-
tioned in Section III. These updates were utilized to de-
termine the relationship between the separation param-
eter s and the energy eigenvalues for the various states
of the double potential well system, which can be seen
in Figure 6. Additionally, the wave functions for the
ground and first excited states with large s (s >> 1) was
also found. These two figures can be seen in Figures 7
and 8 The answer to all four questions in this section
immediately follow the graphs below.

3.1) For s ≈ 0 there were three bound states
whereas for s >> 1 there were two bound
states found.

3.2) The energies we obtained for s ≈ 0 were
somewhat similar to those we obtained from
the single well results. We found that for the
ground state double well we got a value of
ϵ = −8.93037, for the first excited state we got
ϵ = −3.99659, and for the second excited state
we got ϵ = −1.01072. These values can be seen
in Figure 6 as the first data point entered for
each one. The first excited is very similar to the
value found for the single well potential ground
state as seen in Figure 4, while the second
excited state is very similar to the single well
potential first excited state as seen in Figure 5.

FIG. 6: The figure shows the plot for the wave function of the
ground state for the single well potential model with the x-axis
being the value of ξ while the y-axis is ϕ(ξ). The graph displays
the results of running the code in the Appendix in Section VI,
which is based on equation (7). The ϵ value found for the ground
state with the bisection method was −3.999018580466508.

FIG. 7: The figure shows the plot for the wave function of the
ground state for the double well potential model with the x-axis
being the value of ξ while the y-axis is ϕ(ξ). The graph displays
the results of running the code in the Appendix in Section VI,
which is based on equation (7).

3.3) The two energies we found for large s
values were close to the energies found in the
single well analysis. The two energies are
−3.99935 and −1.00296 which are similar to
the values provided in Figures 4 and 5
respectively. They do appear to be “almost
degenerate” as seen in Figures 7 and 8,
appearing like two isolated systems.

3.4) The wave functions for the double well
potential have similar features to the single well
potential that hint at linear combinations. as
they are pair-wise similar as seen by the figures.
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FIG. 8: The figure shows the plot for the wave function of the
first excited state for the double well potential model with the
x-axis being the value of ξ while the y-axis is ϕ(ξ). The graph
displays the results of running the code in the Appendix in
Section VI, which is based on equation (7).

FIG. 9: The figure shows the plot for the wave function of the
second excited state for the double well potential model with the
x-axis being the value of ξ while the y-axis is ϕ(ξ). The graph
displays the results of running the code in the Appendix in
Section VI, which is based on equation (7).

Figure 7 looks like a combination of two Figure
4 graphs centered around xi = 0, Figure 8
looks similar to Figure 5, and Figure 9 looks
like a linear combination of two Figure 5 graphs
centered around ξ = 0.

V. DISCUSSION

The study involved the implementation of numeri-
cal methods to solve the Schrödinger equation, specifi-
cally using the shooting method, bisection method, and
double-well potential models. The shooting method was
employed to determine the number of nodes for the

ground state and first excited state wave functions, yield-
ing results presented in Figures 2 and 3. The ground
state wave function was found to have zero nodes, while
the first excited state wave function had one node. Addi-
tionally, the excited state extended further into space due
to its higher energy eigenvalue, allowing the wave func-
tion to penetrate deeper into regions of lower potential
energy.
The bisection method was utilized to calculate the en-

ergy eigenvalues for the ground state and first excited
state systems. The results, shown in Figures 4 and 5,
indicated that an upper energy limit of ϵ = 1 was recom-
mended to prevent inaccuracies when the energy value
approximates zero. However, due to time constraints,
further exploration of large initial values (ν0) and asso-
ciated eigenenergies was not conducted.
The analysis was extended to double-well potential

models using similar computational techniques. The re-
lationship between the separation parameter (s) and en-
ergy eigenvalues was examined, as shown in Figure 6. For
small values of s, three bound states were observed, while
for large values of s, two bound states were found. The
obtained energy values for small s were somewhat similar
to those from the single well potential, while energies for
large s approached those of the single well analysis.
The wave functions for the ground state, first excited

state, and second excited state in the double well poten-
tial were visualized in Figures 7, 8, and 9, respectively.
Notably, these wave functions exhibited similarities to
their counterparts in the single well potential, suggesting
linear combinations.
Overall, the numerical methods employed in this study

provided insights into the wave functions and energy
eigenvalues of different potential models, offering a valu-
able approach to solving the Schrödinger equation.

VI. APPENDIX

Shooting Method

# −∗− coding : u t f −8 −∗−
”””
Created on Tue May 16 08:29 :26 2023

@author : Alex Mati la inen
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
# Parameters
ximax=8
ximin=−ximax
Nsteps=100∗2∗ximax
h=(2∗ximax )/ Nsteps
nu0=6.0

x i=np . l i n s p a c e (−ximax , ximax , Nsteps )
phi=np . z e r o s ( Nsteps )

nu=−nu0 ∗(np . cosh ( x i ))∗∗(−2)
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eps= −3.9990186 #−3.9990186 ( ground ) , −.998 ( e x c i t e d )

q=np . sq r t (−eps )
phi [0 ]=1
phi [1 ]=np . exp (q∗h)

for i in range (2 , Nsteps ) :
phi [ i ]=(2+h∗∗2∗(nu [ i −1]−eps ) )∗ phi [ i −1]−phi [ i −2]

p l t . p l o t ( xi , phi )
p l t . x l ab e l ( ” x i ” )
p l t . y l ab e l ( ” phi ( x i ) ” )
p l t . t i t l e ( ” T i t l e ” )
p l t . show ( )

Bisection Method

# −∗− coding : u t f −8 −∗−
”””
Created on Tue May 16 09:40 :36 2023

@author : Alex Mati la inen
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
# Parameters
ximax=8
ximin=−ximax
Nsteps=100∗2∗ximax
h=(2∗ximax )/ Nsteps
nu0=6.0

x i=np . l i n s p a c e (−ximax , ximax , Nsteps )
# phi min=np . zeros ( Nsteps )
# phi max=np . zeros ( Nsteps )

nu=−nu0 ∗(np . cosh ( x i ))∗∗(−2)
eps min=−nu0
eps max=−0.1
q min=np . sq r t (−eps min )
q max=np . sq r t (−eps max )
phi=np . z e r o s ( Nsteps )

s t a t e = 1 # 0 for ground s ta t e , 1 f o r f i r s t e x c i t e d s t a t e

while ( ( np . abs ( eps min−eps max )/np . abs ( eps min+eps max ) ) > 10∗∗ −8):
# 10∗∗−8):

eps = ( eps min + eps max ) / 2
q=np . sq r t (−eps )
phi [0 ]=1
phi [1 ]=np . exp (q∗h)

nodes = 0

for i in range (2 , Nsteps ) :
phi [ i ]=(2+h∗∗2∗(nu [ i −1]−eps ) )∗ phi [ i −1]−phi [ i −2]
i f ( phi [ i ]∗ phi [ i −1] < 0 ) :

nodes += 1

i f ( nodes < s t a t e ) :
eps min = eps

e l i f ( nodes > s t a t e ) :
eps max = eps

else :
va l = phi [ Nsteps −1]∗ phi [ Nsteps−2]−np . exp (q∗h )∗ ( phi [ Nsteps −1])∗∗2
i f ( va l < 0 ) :

#[ Nsteps −1])∗∗2
eps min=eps

e l i f ( va l > 0 ) :
eps max = eps

print ( eps )

p l t . p l o t ( xi , phi )
p l t . x l ab e l ( ” x i ” )
p l t . y l ab e l ( ” phi ( x i ) ” )
p l t . t i t l e ( ” T i t l e ” )
p l t . show ( )

Double-Well Potential Model

# −∗− coding : u t f −8 −∗−
”””
Created on Wed May 17 08:03 :01 2023

@author : Alex Mati la inen
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
# Parameters
for s t a t e in range ( 0 , 3 ) :

r e c = 40
s t o t = np . l i n s p a c e ( 0 . 1 , 4 , r e c )
ep sva l s = np . z e r o s ( r ec )
index = 0

for s in s t o t :
ximax=int ( s+8)
ximin=−ximax
Nsteps=100∗2∗ximax
h=(2∗ximax )/ Nsteps
nu0=6.0

x i=np . l i n s p a c e (−ximax , ximax , Nsteps )

nu1=−nu0 ∗(np . cosh ( x i+s ))∗∗(−2)
nu2=−nu0 ∗(np . cosh ( xi−s ))∗∗(−2)
nu=nu1+nu2
eps min=−2∗nu0
eps max=−0.1
q min=np . sq r t (−eps min )
q max=np . sq r t (−eps max )
phi=np . z e r o s ( Nsteps ) #phi=np . zeros ( Nsteps )

while ( ( np . abs ( eps min−eps max )/np . abs ( eps min+eps max ) ) > 10∗∗ −8):
# max )) > 10∗∗−8):

eps = ( eps min + eps max ) / 2
q=np . sq r t (−eps )
phi [0 ]=1
phi [1 ]=np . exp (q∗h)

nodes = 0

for i in range (2 , Nsteps ) :
phi [ i ]=(2+h∗∗2∗(nu [ i −1]−eps ) )∗ phi [ i −1]−phi [ i −2]

#[ i −2]
i f ( phi [ i ]∗ phi [ i −1] < 0 ) :

nodes += 1

i f ( nodes < s t a t e ) :
eps min = eps

e l i f ( nodes > s t a t e ) :
eps max = eps
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else :
va l = phi [ Nsteps −1]∗ phi [ Nsteps−2]−np . exp (q∗h )∗ ( phi [ Nsteps −1])∗∗2
i f ( va l < 0 ) :

eps min=eps
e l i f ( va l > 0 ) :

eps max = eps

ep sva l s [ index ] = eps
index += 1

# i f s==4: ## Used fo r f i nd in g ground
# s t a t e and e x c i t e d s t a t e f o r l a r g e s ( s=4)

# p l t . p l o t ( xi , phi )
# p l t . x l a b e l (” x i ”)
# p l t . y l a b e l (” phi ( x i )”)
# i f s t a t e == 0: #ground
# p l t . t i t l e (” T i t l e ”)
# e l i f s t a t e == 1: #f i r s t e x c i t e d
# p l t . t i t l e (” T i t l e ”)
# p l t . show ()

p l t . p l o t ( s tot , epsva l s , ’ . ’ )

p l t . l egend ( [ ”ground s t a t e ” , ” f i r s t s t a t e ” , ” second s t a t e ” ] )
p l t . t i t l e ( ” T i t l e ” )
p l t . x l ab e l ( ” Separat ion Value ( s ) ” )
p l t . y l ab e l ( ”Eigenenergy value ( eps ) ” )
# p l t . x l im (0 ,4) ## Wavefunctions o f h igh s
# p l t . y l im ( −0.1∗10∗∗(9) ,3.3∗10∗∗(9))
p l t . show ( )
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